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On the Schrodinger equation for the interaction 
x2+Ax2/(1+gx2) 

C S Lai and H E Lin 
Department of Physics, University of Prince Edward Island, Charlottetown, Prince Edward 
Island, Canada C1A 4P3 

Received 25 August 1981, in final form 23 November 1981 

Abstract. By forming the [ 6 , 6 ]  Pad6 approximants to the energy perturbation series for 
the interaction x2+  Ax2/(1 + gx2) as obtained from the hypervirial relations, the ground 
and the first three excited state energy levels are calculated. For g 2, the results of the 
present calculation are in good agreement with those of the variational calculations. We 
also present another set of exact solutions to the Schrodinger equation for the interaction 
x2 + Ax2/( 1 + g x 2 ) .  

1. Introduction 

The Schrodinger equation 

[d2/dX2 + E - V ( X ) ] + ( X )  = 0, 

with an interaction of the type 

V ( x )  = x 2  + A x 2 / (  1 + gx’), (2) 

has recently been studied by many authors (Mitra 1978, Kaushal 1979, Galicia and 
Killingbeck 1979, Bessis and Bessis 1980, Flessas 1981, Hautot 1981). As summarised 
by Mitra (1978), this type of potential is related to certain specific models in laser 
theory (Haken 1970), and also to a zero-dimension field theory with a nonlinear 
Lagrangian (Risken and Vollmer 1967). 

A set of exact solutions to the Schrodinger equation (1) has recently been found 
by Flessas (1981) under the conditions A < 0 and A = A (g). For more general cases, 
Mitra (1978) has calculated the ground and the first two excited state energy eigen- 
values for the potential (2) by using the Ritz variational method in combination with 
the Givens-Householder algorithm. More recently, Bessis and Bessis (1980) have 
studied the same problem by taking advantage of a two-parameter A -  and g-scale 
transformation, and Hautot (1981) has used a Hill determinant method for the 
potential. The energy eigenvalues obtained by these variational calculations seem to 
converge towards the exact eigenvalues of the Schrodinger equation. Also, Galicia 
and Killingbeck (1979) have obtained exact values for the first three even parity states 
by using a finite-difference method. 

On the other hand, Kaushal (1979) has obtained the asymptotic expansions for 
the eigenenergies and eigenfunctions of the wave equation for the potential (2) by 
expanding the factor l / ( l + g x 2 )  in a power series for gx2. The energy eigenvalues 
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to the third order of g calculated by Kaushal (1979) with the Dingle scheme of 
correction are comparable to those of the variational calculations only for g s 1. Using 
perturbation theory, Bessis and Bessis (1980) have also calculated the energy eigen- 
values by introducing a g-dependent scaling. 

In this paper, we would like to point out that there exists another set of exact 
solutions to the Schrodinger equation with the potential (2), in addition to the set 
obtained by Flessas (1981). We would also like to show that the perturbation 
calculation for the interaction (2) can be done more consistently by employing the 
hypervirial relations (Hirschfelder 1960, Swenson and Danforth 1972) and the Pade 
approximant method (Baker 1965, Loeffel et a1 1969, Killingbeck 1978, Lai 1981). 
In  0 2 we present another set of exact solutions to the wave equation with the potential 
(2). In 9 3 we apply the Hellman-Feynman theorem and the hypervirial theorems to 
equation (l),  and calculate the energy perturbation series in powers of the parameter 
g. In § 4 we evaluate the [6,6] Pad6 approximants to the energy series for the ground 
and the first three excited states, and compare them with those of the variational and 
numerical calculations. Finally, we present the conclusion in § 5 .  

2. Exact solutions to the Schrodinger equation 

Let us study the Schrodinger equation with the interaction xz  + Ax2/( 1 + gx2), 

-+E-x  dz --)(I=O, AxZ 
(dx2 1 +gx (3) 

with g > 0. By supposing that the wavefunction (I is given by 

(4) 

Flessas (1981) has recently found a set of exact solutions to equation (3). Substituting 
equation (4) into equation (3), he finds for the first two exact solutions of equation (3) 

$ = A  exp(-xz/2)(1+gx2)(1+alxz+azx 4 +. . .), 

E o = l - g ,  A0 = -4g - 2g2, (Io=Aoexp(-xz/2)(1 +gx2), ( 5 )  

and 

E2 = 3-7g *(25gz- 12g +4)1’2, A 2 =  -(6g+7g2)*g(25gz- 12g +4)1’2, 

42 = A2 exp(-xz/2)(1 + gxz) 

where A,, and A 2  are normalisation constants. 
We notice that, in addition to the set of equation (4), there exists another set of 

exact solutions to equation (3). Let us suppose that the wavefunctions of equation 
(3) can also be written in the form 

(7) 

which are odd functions of x in contrast to equation (4). Inserting equation (7) into 
equation (3), we obtain, for example, for the first two solutions of equation (7) 

E1 =3(1-2g),  AI = -4g -6g2, (I1 = A l  exp(-x2/2)(1 +gxz)x, (8) 

(I = A exp(-x2/2)(1 +gx2)x(1 +b1x2+ b2x4+. . .), 
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and 

E3 = 5 - 13g f (49g2 -4g +4)”2, A3=-(6g + 13g2)*g(49g2-4g+4)l”, 

lj13=A3exp(-x2/2)(1+gx2)x (9) 

where A l  and A 3  are normalisation constants. Here, we note that, when A = g = 0, 
equations (3, (6) and (B), (9) reduce to the first four states of the harmonic oscillator. 

In table 1, we present some calculated values of the energies E; and the constants 
A i  as a function of g for reference. From table 1, we see that, for the set of exact 
solutions to equation (3), the values of A i  are negative, and the values of E, satisfy 

El =G 1, E2 =G 3, E3 S 5 ,  Eq s 7. (10) 

The solutions (4) and (7) thus form a set of exact solutions to the Schrodinger equation 
(3); this set has a one-to-one pairing with the complete set of unperturbed states for 
the oscillator potential (2) as g + 0. 

Table 1. Calculated values of the energy E and the parameter A as  a function of g for 
the first four states. The numbers given in the brackets correspond to the values of A .  

1 3 5 7 
(0) ( 0 )  (0 )  (0)  
0.9 2.7 4.510 78 6.330 53 

(-0.205) (-0.215) (-0.224 46) (-0.233 47) 
0.8 2.4 4.046 43 5.722 38 

(-0.42) (-0.46) (-0.495 36) (-0.527 76) 
0.7 2.1 3.612 08 5.171 91 

(-0.645) (-0.735) (-0.808 19) (-0.874 21) 
0.6 1.8 3.212 45 4.671 56 

(-0.88) (-1.04) (-1.157 51) (-1.265 69) 
0.5 1.5 2.850 78 4.212 22 

(-1.125) ( -  1.375) (-1.537 30) (-1.696 95) 
0.4 1.2 2.527 88 3.785 15 

(-1.38) (- 1.74) (-1.941 64) (-2.164 46) 
0.3 0.9 2.241 89 3.383 00 

( -  1.645) (-2.135) (-2.365 34) (-2.666 95) 
0.2 0.6 1.988 85 3 

( -  1.92) ( -2.56) (-2.804 46) (-3.2) 
0.1 0.3 1.763 17 2.631 72 

(-2.205) (-3.015 (-3.256 31) (-3.765 72) 
0 0 1.561 55 2.274 92 

(-2.5) (-3.5) (-3.719 22) (-4.362 54) 

0 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

3. Hypervirial relations for the interaction x2+Ax2/(1 +gx2) 

In this section, we apply the hypervirial theorems (Hirschfelder 1960) and the Hell- 
man-Feynman theorem to the Schrodinger equation (3). The Hamiltonian H for the 
interaction (2) can be written as 

(11) H = -d2/dX2 + V(X), 
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where the potential V(x) is given by 

V(x)=x2+hx2/ (1  +gx2). 

Starting from the basic commutation relations, we find the following commutation 
relations (Hirschfelder 1960, Swenson and Danforth 1972): 

[xN d/dx, H ] = x N  dV/dx+2NxN-’(V-H)  

+tN[xN-’,  H]-$N(N- l ) ( N - 2 ) ~ ~ - ~ ,  NaO. (13) 

The hypervirial theorems then require that ([xN, HI )  and ( [ x N  dldx, HI )  for N 5 0 
vanish for the eigenstates of equation (3). We obtain, from equation (13), the 
hypervirial relations (Swenson and Danforth 1972) 

(14) 

The potential (12), in accordance with the perturbation scheme (Kaushal 1979), 

E ( x N ) = $ ( N +  l ) - ’ ( x N + ’  dV/dx)+(XNV)-iN(N - 1 ) ( ~ ~ - ~ ) .  

can be expressed as 

where the potential coefficients v k  are 

V, A (- 1 )’, j # O .  (16) 

We note here that the series (15) is valid only for gx2< 1, and the energy series E 
obtained from equation (14) will be at best asymptotic. However, one may use the 
hypervirial Pad6 method (Killingbeck 1978, Lai 1981) to sum such asymptotic series. 
Let us assume that the energy E and the expectation values (xi) take the forms 
(Killingbeck 1978, Grant and Lai 1979) 

2 V O = W  = 1 + A ,  

m 

(17) ( k )  k E n =  c E ,  g ,  
k = O  

where g is the perturbation parameter. The unperturbed value of ELo’ in equation 
(17) is given by 

E Lo) = wq, q =2n + 1, (19) 

where n is the quantum number for the harmonic oscillator. The unperturbed values 
of Cia' in equation (18), on the other hand, can be obtained from the hypervirial 
equations (14). From the Hellman-Feynman theorem, we find then (Grant and Lai 
1979) 

k 
kELk’ = 1 mVmC$kz’.  

m = l  

By inserting equations (15)-( 18) into equation (14), we can determine the energy 
coefficients ELk) in a hierarchical manner with the aid of equations (19)-(20) (Grant 
and Lai 1979). For example, we obtain 

(21) E‘,) = VlCkO’ = -(3A/8w2)(q2+ l), 
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A ’4 5Aq 2 E!,,) = ;(VI Cil) + 2 VzCdo’) = - T (  174’ + 67) + 7 ( q  + 5 ) ,  64w 16w 

EL3’ =f(V1CL2) +2V2Ck1) +3V3Cb0’) 

- 3 A 3  (125q4+ 1 1 3 8 q 2 + 5 1 3 ) + e ( 1  l q 4 +  118q2+63) 
1 0 2 4 ~ ’  256w 

_- 35A (q4 + 14q‘ +9) ,  
1 2 8 J  

EL4’ =a( V1Ci3) +2VzCkz’ +3V3Ck1’ +4V4Cl\)) 

- - -  A4q (10689q4+ 178 330q2+305 141) 
16 384“” 

+- ,(3129q4+59 110q2+11 728) 

-~ ,(1149q4+25 930q2+61 3 6 1 ) + 7 ( q 4 + 3 0 q 2 + 8 9 ) ,  

2048w 

63Aq 
1024w 256w 

where w’ = 1 + A  and 4 = 2n + 1. Expressing in terms of powers of h = q/2(1 
(Kaushal 1979), the energy eigenvalue E, is then given by 

3(q2+ 1) 
4(1 +A)”’  

E, = q( 1 +A)’ / ’  - 

A q  ( --(17qz A + 67) + 20(q2 + 5))h’ 
16(1+A)’/’ 1 + A  

+ 

3 A Z  (125q4 + 1 138q’ + 513) 
A 

128(1 
+ 
+---(I 900A l q 4 +  118q2+63)-280(q4+ 14qz+9))h3 

1 + A  

+ qh A 3  (10689q4+178 330q2+305 141) 

+- ’*’ (3129q4+59 l10q2+11 728) 

1024(1 +A)l” 

(1 + A ) ’  

-%(1149q4 + 25 930q2 +61361)  +4032(q4+ 30q’ + 89))h4 +. . . . 
I+A 

(25) 
We note here that the first four terms in the expression (25) are in agreement with 
those obtained by Kaushal (1979). The solution (25) should be valid for h << 1. 

Our hypervirial scheme for calculating the energy coefficients ELk’ for the interac- 
tion x’+Ax’/(l +gx’) can be more conveniently done by computer (Grant and Lai 
1979). We present, for reference, some results for perturbative calculations for the 
ground state energy for the case g = 1.0, A = 1.0. Denoting that E ( k )  is the energy 
series sum up to the g‘ term, we find, for g = 1.0 and A = 1.0, E(0) = 1.4142, E(1) = 
1.0392, E(2)  = 1.4701, E(3)  = 0.9105, E(4)  = 1.7045,. . . , E(11) = -787.3805 and 
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E(12) = 4200.5040. The result of Kaushal (1979) for the same calculation correct to 
the third order of g with the Dingle scheme of correction is E ( 3 )  = 1.227. The exact 
value from the calculations of Mitra (1978) and Galicia and Killingbeck (1979) is 
1.2324. It is evident that the perturbative calculation of the energy E, is not reliable 
when g - 1. However, the results of the perturbative calculation can be much improved 
with the use of the Pad6 approximant method (Baker 1965, Loeffel et a1 1969, 
Killingbeck 1978, Lai 1981). 

4. The Pade approximant calculation of energy eigenvalues 

The energy series (17) for the interaction Ax2/(1 + gx2)  appears to be asymptotic for 
g - 1. However, we can still calculate the energy E, for g - 1 to a very high accuracy 
by forming the Pad6 approximants to the energy series (Killingbeck 1978, Lai 1981). 
The [ N , N ]  Pad6 approximant to the energy series is given by (Baker 1965) 

where the coefficients ql ,  . . . , q N  and pl,  . . . , pN can be found from the knowledge of 
E"', E'2', , . . , E'2N', which can be computed from the hypervirial relations in a 
hierarchical manner. We confine ourselves to the calculation of the Pad6 approximant 
E[6,6] in this paper. 

Our calculated energy values E, of the [6,6] Pad6 approximants to the energy 
series (17) for the ground and the first three excited states are shown in table 2. Our 
results are compared with those of Bessis and Bessis (1980) which are listed in the 
brackets in table 2. The first three energy levels for different values of g and A were 
also calculated by Mitra (1978) by using the Ritz variational method with the Jacobi 
diagonalisation of more than 3 0 x 3 0  matrices. We note here that our calculated 
values of E, in table 2 are closer to the results of Mitra than those obtained by Bessis 
and Bessis from the Jacobi diagonalisation of 18 x 18 matrices. To show this point, 
we present, in table 3, the results of energy eigenvalues for g = 1 , 2  and A = 0.1, 0.5, 
1.0 as calculated by Mitra (1978), Bessis and Bessis (1980), Galicia and Killingbeck 
(1979) and the present method for comparison. It is evident from table 3 that our 
results are in better agreement with those of Mitra and of Galicia and Killingbeck 
than with those of Bessis and Bessis in this region. Our work is therefore an 
improvement over the perturbative scheme of Kaushal (1979). 

From our calculations, we thus conclude that, for g S 2, the [6,6] Pad6 approximants 
to the energy series (17) can be used to determine the energy eigenvalues of the 
potential (2) to a very high accuracy. However, for g > 2 ,  either the higher-order 
Pad6 approximants or the variational method must be used to calculate the various 
energy eigenvalues. Our scheme can also be used to evaluate energy eigenvalues for 
the case A < 0 as discussed in 0 2. 

5. Conclusion 

In this paper, we have presented another set of exact solutions to the Schrodinger 
equation with the potential V ( x )  = x 2  + A x 2 / (  1 + g x 2 )  for A < 0, in addition to the set 
of exact solutions proposed by Flessas (1981). We have also calculated the [6,6] Pad6 
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Table 3. Calculated values of the energy E, obtained from four different methods: (a) 
Mitra, (b) Bessis and Bessis, (c) Galicia and Killingbeckt and (d) the present work. 

A 0.1 0.5 1 .o 

a 
b n = l  
C 

d 
a 

g = l n = 2  b 
d 
a 
b n = 3  
C 

d 
a 
b n = l  
C 

d 
a 

g = 2 n = 2  b 
d 
a 
b n = 3  
C 

d 

1.024 10 
1.024 186 75 
1.024 109 61 
1.024 123 42 
3.051 49 
3.051 650 67 
3.05 1 526 02 
5.034 44 
5.059 286 55 
5.058 963 28 
5.058 990 12 
1.017 18 
1.017 894 66 
1.017 180 29 
1.017 281 60 
3.032 76 
3.031 773 
3.032 957 27 
5.034 44 
5.035 846 
5.034 441 87 
5.034 551 93 

1.118 54 
1.1 18 589 46 
1.118 545 99 
1.11855287 
3.255 77 
3.255 842 10 
3.255 802 59 
5.294 88 
5.295 062 92 
5.294 888 95 
5.294 916 27 
1.085 19 
1.087 064 9 
1.085 196 21 
1.085 285 78 
3.163 46 
3.186 776 
3.163 714 18 
5.172 40 
5.175 886 
5.172 399 81 
5.172 579 32 

1.232 35 
1.232 372 05 
1.232 350 72 
1.232 353 53 
3.507 38 
3.507 420 53 
3.507 397 06 
5.589 77 
5.589 860 86 
5.589 778 94 
5.589 833 55 
1.168 67 
1.170485 
1.168 671 06 
1.168 723 92 
3.326 02 
3.329 042 
3.326 136 99 
5.345 24 
5.348 490 66 
5.345 248 72 
5.345 642 68 

t Corrected results provided by the authors. 

approximants to the energy series (17) as derived from the hypervirial relations. The 
results of the present calculation for the ground and the first three excited state energy 
levels for g 6 2 are in very good agreement with those of the variational calculations 
by Mitra (1978) and Bessis and Bessis (1980), and with those computed by the 
finite-difference method of Galicia and Killingbeck (1979). In comparison with the 
variational method, the present hypervirial Pad6 scheme is simpler and more straight- 
forward, and can be used to check the results of the variational calculations for g s 2. 
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