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Abstract. By forming the [6, 6] Padé approximants to the energy perturbation series for
the interaction x>+ Ax?/(1 +gx2) as obtained from the hypervirial relations, the ground
and the first three excited state energy levels are calculated. For g =<2, the results of the
present calculation are in good agreement with those of the variational calculations. We
also present another set of exact solutions to the Schrédinger equation for the interaction
x2 +/\x2/(1 + gxz).

1. Introduction

The Schrodinger equation

[d*/dx*+E - V(x)l¥(x) =0, (1)
with an interaction of the type
V(x)=x2+)\x2/(1-+-gx2), (2)

has recently been studied by many authors (Mitra 1978, Kaushal 1979, Galicia and
Killingbeck 1979, Bessis and Bessis 1980, Flessas 1981, Hautot 1981). Assummarised
by Mitra (1978), this type of potential is related to certain specific models in laser
theory (Haken 1970), and also to a zero-dimension field theory with a nonlinear
Lagrangian (Risken and Vollmer 1967).

A set of exact solutions to the Schrodinger equation (1) has recently been found
by Flessas (1981) under the conditions A <0 and A =A(g). For more general cases,
Mitra (1978) has calculated the ground and the first two excited state energy eigen-
values for the potential (2) by using the Ritz variational method in combination with
the Givens-Householder algorithm. More recently, Bessis and Bessis (1980) have
studied the same problem by taking advantage of a two-parameter A- and g-scale
transformation, and Hautot (1981) has used a Hill determinant method for the
potential. The energy eigenvalues obtained by these variational calculations seem to
converge towards the exact eigenvalues of the Schrédinger equation. Also, Galicia
and Killingbeck (1979) have obtained exact values for the first three even parity states
by using a finite-difference method.

On the other hand, Kaushal (1979) has obtained the asymptotic expansions for
the eigenenergies and eigenfunctions of the wave equation for the potential (2) by
expanding the factor 1/(1+gx?) in a power series for gx*. The energy eigenvalues

0305-4470/82/051495+08%02.00 © 1982 The Institute of Physics 1495



1496 CSLaiand HE Lin

to the third order of g calculated by Kaushal (1979) with the Dingle scheme of
correction are comparable to those of the variational calculations only for g < 1. Using
perturbation theory, Bessis and Bessis (1980) have also calculated the energy eigen-
values by introducing a g-dependent scaling.

In this paper, we would like to point out that there exists another set of exact
solutions to the Schrodinger equation with the potential (2), in addition to the set
obtained by Flessas (1981). We would also like to show that the perturbation
calculation for the interaction (2) can be done more consistently by employing the
hypervirial relations (Hirschfelder 1960, Swenson and Danforth 1972) and the Padé
approximant method (Baker 1965, Loeffel et al 1969, Killingbeck 1978, Lai 1981).
In § 2 we present another set of exact solutions to the wave equation with the potential
(2). In § 3 we apply the Hellman-Feynman theorem and the hypervirial theorems to
equation (1), and calculate the energy perturbation series in powers of the parameter
g. In § 4 we evaluate the [6,6] Padé approximants to the energy series for the ground
and the first three excited states, and compare them with those of the variational and
numerical calculations. Finally, we present the conclusion in § 5.

2. Exact solutions to the Schrodinger equation

Let us study the Schrodinger equation with the interaction x>+ Ax?/(1+ gx?),

2

d? s Ax
(d—x—i+E_x _1+gx2)w—0’ (3)

with g > 0. By supposing that the wavefunction ¢ is given by
v =Aexp(~x*/2)(1+gx)(1+ax*+ax*+..), 4)

Flessas (1981) has recently found a set of exact solutions to equation (3). Substituting
equation (4) into equation (3), he finds for the first two exact solutions of equation (3)

Eo=1-g, Ao=~dg~2g> Wo=Aoexp(—x*/2)(1 +gx?), (5)
and
E,=3-7g+(25g°-12g+4)""?, Ar=—(6g+7g")+g(25g% - 12g +4)'?,
4g2
A .2 + 2( 48 2)
U2 2exp(—x"/2)(1+gx)| 1 12g2+4g+A2x , (6)

where Ay and A, are normalisation constants.

We notice that, in addition to the set of equation (4), there exists another set of
exact solutions to equation (3). Let us suppose that the wavefunctions of equation
(3) can also be written in the form

=Aexp(-x*/2)(1+gx)x (1 +bx’ +box*+.. ), (7

which are odd functions of x in contrast to equation (4). Inserting equation (7) into
equation (3), we obtain, for example, for the first two solutions of equation (7)

E:=3(1-2g), A =—4g—6g°, U1 =A, exp(=x2/2)(1+gxd)x, (8)



Schrédinger equation for interaction x*+ Ax3/(1+ gxz) 1497

and
Es=5-13g+(49g° —4g+4)"?, Ay=—(6g+13g°) £ g(49g°—4g+4)'"?,
_ .2 2 _____f_gj_____ 2)
= Az explox’/2)(1+ e )x{ 1 3o ), 9

where A; and A, are normalisation constants. Here, we note that, when A =g =0,
equations (5), (6) and (8), (9) reduce to the first four states of the harmonic oscillator.
In table 1, we present some calculated values of the energies E; and the constants
A; as a function of g for reference. From table 1, we see that, for the set of exact
solutions to equation (3), the values of A; are negative, and the values of E; satisfy

E <1, E,<3, E;<5, Ey<T. (10)

The solutions (4) and (7) thus form a set of exact solutions to the Schrédinger equation
(3); this set has a one-to-one pairing with the complete set of unperturbed states for
the oscillator potential (2) as g > 0.

Table 1. Calculated values of the energy E and the parameter A as a function of g for
the first four states. The numbers given in the brackets correspond to the values of A.

E, E, E, E;
g (Ao) (Ap) (A2) (A3)
0 1 3 5 7
(0) (0) (0) 0
0.05 0.9 2.7 4.51078 6.33053
(—0.205) (-0.215) (—0.224 46) (—-0.23347)
0.10 0.8 2.4 4.046 43 5.722 38
’ (-0.42) (—0.46) (~0.495 36) (—0.52776)
0.15 0.7 2.1 361208 5.17191
(-0.645) (=0.735) (-0.808 19) (-0.87421)
0.20 0.6 1.8 3.21245 4.671 56
: (-0.88) (—-1.04) (-1.157 51) (—1.26569)
0.5 0.5 1.5 2.85078 4.21222
’ (—1.125) (-1.375) (—-1.537 30) (—1.696 95)
0.30 0.4 1.2 2.527 88 3.78515
' (-1.38) (—-1.74) (-1.941 64) (—2.164 46)
0.35 0.3 0.9 2.24189 3.38300
’ (—-1.645) (—2.135) (—2.365 34) (—2.666 95)
0.40 0.2 0.6 1.988 85 3
' (-1.92) (-2.56) (—2.804 46) (-3.2)
0.45 0.1 0.3 1.763 77 2.63172
’ (=2.205) (—-3.015 (—3.256 31) (—3.76572)
0.50 0 0 1.561 55 2.27492
(-2.5) (-3.5) (~3.71922) (—4.362 54)

3. Hypervirial relations for the interaction x*+ Ax?/(1+gx?)

In this section, we apply the hypervirial theorems (Hirschfelder 1960) and the Hell-
man-Feynman theorem to the Schrddinger equation (3). The Hamiltonian H for the
interaction (2) can be written as

H =-d*/dx*+ V(x), (11)
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where the potential V(x) is given by
Vix)=x>+ax’/(1+gx?). (12)

Starting from the basic commutation relations, we find the following commutation
relations (Hirschfelder 1960, Swenson and Danforth 1972):

[x" d/dx, H]=x" dV/dx +2Nx" (V- H)
ANV H]-ININ =N =232, N=0. (13)

The hypervirial theorems then require that ((x", H]) and ([x" d/dx, H)) for N=0
vanish for the eigenstates of equation (3). We obtain, from equation (13), the
hypervirial relations (Swenson and Danforth 1972)

EGMy=3N+1)7" (N dv/dx)y + NV NN - D(x N7, (14)
The potential (12), in accordance with the perturbation scheme (Kaushal 1979),
can be expressed as

V= 3 g vV, (15)

where the potential coefficients V, are
Vo=w’=1+A, Vi=A(=1), j#0. (16)

We note here that the series (15) is valid only for gx*<1, and the energy series E
obtained from equation (14) will be at best asymptotic. However, one may use the
hypervirial Padé method (Killingbeck 1978, Lai 1981) to sum such asymptotic series.
Let us assume that the energy E and the expectation values (x’) take the forms
(Killingbeck 1978, Grant and Lai 1979)

E.= Y ElFg* (17)
k=0
(xi>=k20 C;k]gk (18)

where g is the perturbation parameter. The unperturbed value of E “ jin equation
(17) is given by

EQ = wq, g=2n+1, (19)

where # is the quantum number for the harmonic oscillator. The unperturbed values
of Ci” in equation (18), on the other hand, can be obtained from the hypervirial
equations (14). From the Hellman-Feynman theorem, we find then (Grant and Lai
1979)

k
kKE¥ = Y mV,Cy.0. (20)
m=1

By inserting equations (15)-(18) into equation (14), we can determine the energy
coefficients E*’ in a hierarchical manner with the aid of equations (19)-(20) (Grant
and Lai 1979). For example, we obtain

EY =v,CQ =-(31/80%)(g* + 1), (21)
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2

E? =Ly, ‘”+2vzc‘°’)——’\q(17 +67)+ 3(q +5), (22)

64w
E) =5 ViCP +2V,CQ +3V5Cy)
3a° 225)°
=~ T2 1254° +1138¢7 +513)+ = 2 = —s(11q°+118¢°+63)
35A
~ a7 T 1447 +9), (23)

EX =Xv,CcP +2v,C@ +3V,CY +4v,CQ
A4
= —1638—;’“)”(10 689g* +178 3304 +305 141)

A3

T20480°
Alg 6319
~To34c -(1149¢* +25 9304° +61361)+2 560°

where w®=1+A and g =2n +1. Expressing in terms of powers of h =¢q/2(1+A)"?
(Kaushal 1979), the energy eigenvalue E, is then given by

(3129¢*+59 110g°+ 11 728)

(g*+30g°+89), (24)

3(q2+1)
= 12 3@ +1)
E,.=q(1+21) EYE
Aq .
16(1+,\)”2( 1+A(17‘1 +67)+20(q +5))h
A 3A2
+128(1+/\)‘/2(_(1+/\)2(125q4+1138‘12+513)

00A
+%(11q“+ 1184%+63)-280(q* + 14q2+9))h3

gA ( A?
1024(1+)\)”2 (1+2A)

2

5(10 689g° +178 3304 + 305 141)

(1+/\)2(3129q +59110g*+11728)

1
—L(1149q +25930q° +61361)+4032(q* +30q +89))

(25)

We note here that the first four terms in the expression (25) are in agreement with
those obtained by Kaushal (1979). The solution (25) should be valid for h « 1.

Our hypervirial scheme for calculating the energy coefficients E'’ for the interac-
tion x>+ Ax2/(1+gx?) can be more conveniently done by computer (Grant and Lai
1979). We present, for reference, some results for perturbative calculations for the
ground state energy for the case g =1.0, A =1.0. Denoting that E(k) is the energy
series sum up to the g" term, we find, for g=1.0and A = 1.0, E(0)=1.4142, E(1)=
1.0392, E(2)=1.4701, E(3)=0.9105, E(4)=1.7045,..., E(11)=-787.3805 and
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E(12)=4200.5040. The result of Kaushal (1979) for the same calculation correct to
the third order of g with the Dingle scheme of correction is E(3) = 1.227. The exact
value from the calculations of Mitra (1978) and Galicia and Killingbeck (1979) is
1.2324. It is evident that the perturbative calculation of the energy E, is not reliable
when g ~ 1. However, the results of the perturbative calculation can be much improved
with the use of the Padé approximant method (Baker 1965, Loeffel et al 1969,
Killingbeck 1978, Lai 1981).

4. The Padé approximant calculation of energy eigenvalues

The energy series (17) for the interaction Ax2/(1+ gx>) appears to be asymptotic for
g ~1. However, we can still calculate the energy E, for g ~1 to a very high accuracy
by forming the Padé approximants to the energy series (Killingbeck 1978, Lai 1981).
The [N,N] Padé approximant to the energy series is given by (Baker 1965)

1+gp;+...+g"
E[NN]= E© 8P ngN _ E(0’+gEm+gZEm+ - .+g2NE(2N)’ (26)
1+gq1+...+g8 gn
where the coefficients g1, ..., g~ and py, ..., pn can be found from the knowledge of
E‘”, Em, ceey EQN), which can be computed from the hypervirial relations in a

hierarchical manner. We confine ourselves to the calculation of the Padé approximant
E[6,6] in this paper.

Our calculated energy values E, of the [6,6] Padé approximants to the energy
series (17) for the ground and the first three excited states are shown in table 2. Our
results are compared with those of Bessis and Bessis (1980) which are listed in the
brackets in table 2. The first three energy levels for different values of g and A were
also calculated by Mitra (1978) by using the Ritz variational method with the Jacobi
diagonalisation of more than 30x30 matrices. We note here that our calculated
values of E, in table 2 are closer to the results of Mitra than those obtained by Bessis
and Bessis from the Jacobi diagonalisation of 18 x 18 matrices. To show this point,
we present, in table 3, the results of energy eigenvalues for g=1,2 and A =0.1, 0.5,
1.0 as calculated by Mitra (1978), Bessis and Bessis (1980), Galicia and Killingbeck
(1979) and the present method for comparison. It is evident from table 3 that our
results are in better agreement with those of Mitra and of Galicia and Killingbeck
than with those of Bessis and Bessis in this region. Our work is therefore an
improvement over the perturbative scheme of Kaushal (1979).

From our calculations, we thus conclude that, for g < 2, the [6,6] Padé approximants
to the energy series (17) can be used to determine the energy eigenvalues of the
potential (2) to a very high accuracy. However, for g>2, either the higher-order
Padé approximants or the variational method must be used to calculate the various
energy eigenvalues. Our scheme can also be used to evaluate energy eigenvalues for
the case A <0 as discussed in § 2.

5. Conclusion

In this paper, we have presented another set of exact solutions to the Schrédinger
equation with the potential V(x)=x>+Ax?/(1+ gx?) for A <0, in addition to the set
of exact solutions proposed by Flessas (1981). We have also calculated the [6,6] Padé
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Table 3. Calculated values of the energy E, obtained from four different methods: (a)
Mitra, (b) Bessis and Bessis, (c) Galicia and Killingbeckt and (d) the present work.

A 0.1 0.5 1.0
a 1.024 10 1.118 54 1.23235
ne=1 b 1.024 18675 1.118 58946 1.232 37205
c 1.024 109 61 1.118 54599 1.23235072
d 1.024 12342 1.118 552 87 1.232 35353
a 3.05149 3.25577 3.507 38
g=1n=2 b 3.05165067 3.25584210 3.507 42053
d 3.05152602 325580259 3.507 397 06
a 5.034 44 5.294 88 5.58977
n=3 b 5.059 286 55 529506292 5.589 860 86
c 5.058963 28 5.294 888 95 5.589778 94
d 5.05899012 5.294 916 27 5.589 83355
a 1.017 18 1.08519 1.168 67
n=1 b 1.017 894 66 1.087 064 9 1.170 485
c 1.017 18029 1.085 196 21 1.168 671 06
d 1.017 281 60 1.08528578 1.168 72392
a 3.03276 3.16346 3.326 02
g=2n=2 b 3.031773 3.186 776 3.329 042
d 3.03295727 3.163714 18 332613699
a 5.034 44 5.17240 5.34524
n=3 b 5.035846 5.175 886 5.348 490 66
c 5.034 441 87 5.172 399 81 534524872
d 5.034 55193 5.172 57932 5.345642 68

t Corrected results provided by the authors.

approximants to the energy series (17) as derived from the hypervirial relations. The
results of the present calculation for the ground and the first three excited state energy
levels for g =<2 are in very good agreement with those of the variational caiculations
by Mitra (1978) and Bessis and Bessis (1980), and with those computed by the
finite-difference method of Galicia and Killingbeck (1979). In comparison with the
variational method, the present hypervirial Padé scheme is simpler and more straight-
forward, and can be used to check the results of the variational calculations for g <2.
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